Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.3 Integrating Trigonometric Functions - Exercises Set 7.3 - Page 507: 23

Answer

$$\frac{1}{2}\tan \left( {2x - 1} \right) + C$$

Work Step by Step

$$\eqalign{ & \int {{{\sec }^2}\left( {2x - 1} \right)} dx \cr & {\text{substitute }}u = 2x - 1,{\text{ }}du = 2dx \cr & = \int {{{\sec }^2}u} \left( {\frac{{du}}{2}} \right) \cr & = \frac{1}{2}\int {{{\sec }^2}u} du \cr & {\text{find the antiderivative }} \cr & = \frac{1}{2}\tan u + C \cr & {\text{write in terms of }}x,{\text{ replace }}u = 2x - 1 \cr & = \frac{1}{2}\tan \left( {2x - 1} \right) + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.