Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.3 Integrating Trigonometric Functions - Exercises Set 7.3 - Page 507: 20

Answer

$$\pi $$

Work Step by Step

$$\eqalign{ & \int_{ - \pi }^\pi {{{\cos }^2}5\theta } d\theta \cr & {\text{identity }}{\cos ^2}x = \frac{{1 + \cos 2x}}{2} \cr & = \int_{ - \pi }^\pi {\frac{{1 + \cos 2\left( {5\theta } \right)}}{2}} d\theta \cr & = \int_{ - \pi }^\pi {\frac{{1 + \cos 2\left( {5\theta } \right)}}{2}} d\theta \cr & = \int_{ - \pi }^\pi {\left( {\frac{1}{2} + \frac{{\cos 10\theta }}{2}} \right)} d\theta \cr & {\text{find antiderivative}} \cr & = \left[ {\frac{\theta }{2} + \frac{{\sin 10\theta }}{{20}}} \right]_{ - \pi }^\pi \cr & {\text{fundamental theorem of calculus}} \cr & = \left[ {\frac{\pi }{2} + \frac{{\sin 10\pi }}{{20}}} \right] - \left[ {\frac{{ - \pi }}{2} - \frac{{\sin 10\pi }}{{20}}} \right] \cr & {\text{simplifying}} \cr & = \left[ {\frac{\pi }{2} + 0} \right] - \left[ {\frac{{ - \pi }}{2} - 0} \right] \cr & = \frac{\pi }{2} + \frac{\pi }{2} \cr & = \pi \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.