Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.3 Integrating Trigonometric Functions - Exercises Set 7.3 - Page 507: 25

Answer

$$\ln \left| {\cos {e^{ - x}}} \right| + C$$

Work Step by Step

$$\eqalign{ & \int {{e^{ - x}}\tan \left( {{e^{ - x}}} \right)} dx \cr & = \int {\frac{{\sin {e^{ - x}}}}{{\cos {e^{ - x}}}}} \left( {{e^{ - x}}} \right)dx \cr & {\text{substitute }}u = \cos {e^{ - x}},{\text{ }}du = {e^{ - x}}\sin {e^{ - x}}dx \cr & = \int {\frac{{du}}{u}} \cr & {\text{find the antiderivative }} \cr & = \ln \left| u \right| + C \cr & {\text{write in terms of }}x,{\text{ replace }}u = \cos {e^{ - x}} \cr & \ln \left| {\cos {e^{ - x}}} \right| + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.