Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.3 Integrating Trigonometric Functions - Exercises Set 7.3 - Page 506: 10

Answer

$$\frac{{{{\sin }^5}x}}{5} - \frac{{{{\sin }^3}x}}{3} + C$$

Work Step by Step

$$\eqalign{ & \int {{{\sin }^3}x{{\cos }^2}} xdx \cr & {\text{split off }}{\sin ^3}x \cr & = \int {{{\sin }^2}x{{\cos }^2}} x\sin xdx \cr & {\text{identity }}{\sin ^2}x + {\cos ^2}x = 1 \cr & = \int {{{\sin }^2}x{{\cos }^2}x} \sin xdx \cr & = \int {\left( {1 - {{\cos }^2}x} \right)} co{s^2}x\sin xdx \cr & = \int {\left( {{{\cos }^2}x - {{\cos }^4}x} \right)} \sin xdx \cr & {\text{substitute }}u = \cos x,{\text{ }}du = - \sin xdx \cr & = \int {\left( {{u^2} - {u^4}} \right)} \left( { - du} \right) \cr & = \int {\left( {{u^4} - {u^2}} \right)} du \cr & {\text{find the antiderivatives by the power rule}} \cr & = \frac{{{u^5}}}{5} - \frac{{{u^3}}}{3} + C \cr & {\text{write in terms of }}x,{\text{ replace }}u = \sin x \cr & = \frac{{{{\sin }^5}x}}{5} - \frac{{{{\sin }^3}x}}{3} + C \cr} $$
This answer is currently locked

Someone from the community is currently working feverishly to complete this textbook answer. Don’t worry, it shouldn’t be long.