Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.3 Integrating Trigonometric Functions - Exercises Set 7.3 - Page 507: 28

Answer

$$2\ln \left| {\sec \sqrt x + \tan \sqrt x } \right| + C$$

Work Step by Step

$$\eqalign{ & \int {\frac{{\sec \left( {\sqrt x } \right)}}{{\sqrt x }}} dx \cr & = \int {\frac{{\sec {x^{1/2}}}}{{{x^{1/2}}}}} dx \cr & = \int {\sec {x^{1/2}}\left( {{x^{ - 1/2}}} \right)} dx \cr & {\text{substitute }}u = {x^{1/2}},{\text{ }}du = \frac{1}{2}{x^{ - 1/2}}dx \cr & 2du = {x^{ - 1/2}}dx \cr & = \int {\sec {x^{1/2}}\left( {{x^{ - 1/2}}} \right)} dx \cr & = \int {\sec u\left( {2du} \right)} \cr & = 2\int {\sec udu} \cr & {\text{find the antiderivative }}\left( {{\text{use formula 22 page 503}}} \right) \cr & = 2\ln \left| {\sec u + \tan u} \right| + C \cr & {\text{write in terms of }}x,{\text{ replace }}u = {x^{1/2}} \cr & = 2\ln \left| {\sec {x^{1/2}} + \tan {x^{1/2}}} \right| + C \cr & = 2\ln \left| {\sec \sqrt x + \tan \sqrt x } \right| + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.