Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.3 Integrating Trigonometric Functions - Exercises Set 7.3 - Page 507: 45

Answer

$$\frac{1}{2} - \frac{\pi }{8}$$

Work Step by Step

$$\eqalign{ & \int_0^{\pi /8} {{{\tan }^2}2x} dx \cr & {\text{Use the trigonometric identity ta}}{{\text{n}}^2}\theta + 1 = {\sec ^2}\theta \cr & \int_0^{\pi /8} {{{\tan }^2}2x} dx = \int_0^{\pi /8} {\left( {{{\sec }^2}2x - 1} \right)} dx \cr & = \frac{1}{2}\int_0^{\pi /8} {{{\sec }^2}2x\left( 2 \right)} dx - \int_0^{\pi /8} {dx} \cr & {\text{Integrating}} \cr & = \frac{1}{2}\left( {\tan 2x} \right)_0^{\pi /8} - \left( x \right)_0^{\pi /8} \cr & = \left( {\frac{1}{2}\tan 2x - x} \right)_0^{\pi /8} \cr & = \left( {\frac{1}{2}\tan 2\left( {\frac{\pi }{8}} \right) - \frac{\pi }{8}} \right) - \left( {\frac{1}{2}\tan 2\left( 0 \right) - \left( 0 \right)} \right) \cr & {\text{Simplifying}} \cr & = \frac{1}{2}\tan \left( {\frac{\pi }{4}} \right) - \frac{\pi }{8} - 0 \cr & = \frac{1}{2} - \frac{\pi }{8} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.