Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.3 Integrating Trigonometric Functions - Exercises Set 7.3 - Page 507: 37

Answer

$$ = \frac{{{{\sec }^3}t}}{3} + C$$

Work Step by Step

$$\eqalign{ & \int {\tan t{{\sec }^3}t} dt \cr & {\text{split exponent se}}{{\text{c}}^3}t \cr & = \int {\tan t{{\sec }^2}t} \sec tdt \cr & = \int {{{\sec }^2}t} \sec t\tan tdt \cr & {\text{substitute }}u = \sec t,{\text{ }}du = \sec t\tan tdt \cr & = \int {{u^2}} du \cr & {\text{find the antiderivative by the power rule}} \cr & = \frac{{{u^3}}}{3} + C \cr & {\text{write in terms of }}t,{\text{ replace }}u = \sec t \cr & = \frac{{{{\sec }^3}t}}{3} + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.