Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.3 Integrating Trigonometric Functions - Exercises Set 7.3 - Page 507: 17

Answer

$$\frac{2}{3}$$

Work Step by Step

$$\eqalign{ & \int_0^{\pi /2} {{{\cos }^3}x} dx \cr & {\text{split off }}{\cos ^3}at \cr & = \int_0^{\pi /2} {{{\cos }^2}x\cos x} dx \cr & {\text{identity }}{\sin ^2}x + {\cos ^2}x = 1 \cr & = \int_0^{\pi /2} {\left( {1 - {{\sin }^2}x} \right)\cos x} dx \cr & = \int_0^{\pi /2} {\left( {\cos x - {{\sin }^2}x\cos x} \right)} dx \cr & {\text{find antiderivatives}} \cr & = \left[ {\sin x - \frac{{{{\sin }^3}x}}{3}} \right]_0^{\pi /2} \cr & {\text{fundamental theorem of calculus}} \cr & = \left( {\sin \left( {\pi /2} \right) - \frac{{{{\sin }^3}\left( {\pi /2} \right)}}{3}} \right) - \left( {\sin \left( 0 \right) - \frac{{{{\sin }^3}\left( 0 \right)}}{3}} \right) \cr & {\text{simplifying}} \cr & = 1 - \frac{1}{3} \cr & = \frac{{3 - 1}}{3} \cr & = \frac{2}{3} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.