Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.3 Integrating Trigonometric Functions - Exercises Set 7.3 - Page 507: 27

Answer

$$\frac{1}{4}\ln \left| {\sec 4x + \tan 4x} \right| + C$$

Work Step by Step

$$\eqalign{ & \int {\sec 4x} dx \cr & {\text{substitute }}u = 4x,{\text{ }}du = 4dx \cr & \frac{1}{4}du = dx \cr & \int {\sec 4x} dx = \frac{1}{4}\int {\sec u} du \cr & {\text{find the antiderivative }}\left( {{\text{use formula 22 page 503}}} \right) \cr & = \frac{1}{4}\ln \left| {\sec u + \tan u} \right| + C \cr & {\text{write in terms of }}x,{\text{ replace }}u = 4x \cr & = \frac{1}{4}\ln \left| {\sec 4x + \tan 4x} \right| + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.