Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.3 Integrating Trigonometric Functions - Exercises Set 7.3 - Page 507: 31

Answer

$$\frac{{{{\sec }^4}4x}}{{16}} + C$$

Work Step by Step

$$\eqalign{ & \int {\tan 4x{{\sec }^4}4x} dx \cr & {\text{split }}{\sec ^4}x \cr & = \int {\tan 4x\sec 4x{{\sec }^3}4x} dx \cr & = \int {{{\sec }^3}4x\sec 4x\tan 4x} dx \cr & {\text{substitute }}u = \sec 4x,{\text{ }}du = \sec 4x\tan 4x\left( 4 \right)dx \cr & \frac{1}{4}du = \sec 4x\tan 4xdx \cr & = \int {{u^3}\left( {\frac{1}{4}du} \right)} \cr & = \frac{1}{4}\int {{u^3}du} \cr & {\text{find the antiderivative by the power rule}} \cr & = \frac{{{u^4}}}{{16}} + C \cr & {\text{write in terms of }}x,{\text{ replace }}u = \tan x \cr & = \frac{{{{\sec }^4}4x}}{{16}} + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.