Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.3 Integrating Trigonometric Functions - Exercises Set 7.3 - Page 507: 49

Answer

$$ - \frac{{{{\csc }^5}x}}{5} + \frac{{{{\csc }^3}x}}{3} + C$$

Work Step by Step

$$\eqalign{ & \int {{{\cot }^3}x{{\csc }^3}x} dx \cr & {\text{Write the integrand as}} \cr & \int {{{\csc }^2}x{{\cot }^2}x\cot x\csc x} dx \cr & {\text{Use the trigonometric identity }}{\cot ^2}\theta = {\csc ^2}\theta - 1 \cr & = \int {{{\csc }^2}x\left( {{{\csc }^2}x - 1} \right)} \cot x\csc xdx \cr & {\text{Multiply}} \cr & = \int {\left( {{{\csc }^4}x - {{\csc }^2}x} \right)} \cot x\csc xdx \cr & = \int {\left( {{{\csc }^4}x - {{\csc }^2}x} \right)} \cot x\csc xdx \cr & = \int {{{\csc }^4}x} \cot x\csc xdx - \int {{{\csc }^2}x} \cot x\csc xdx \cr & = - \int {{{\csc }^4}x} \left( { - \cot x\csc x} \right)dx + \int {{{\csc }^2}x} \left( { - \cot x\csc x} \right)dx \cr & {\text{Integrate using the power rule}} \cr & - \frac{{{{\csc }^5}x}}{5} + \frac{{{{\csc }^3}x}}{3} + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.