Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.3 Integrating Trigonometric Functions - Exercises Set 7.3 - Page 507: 22

Answer

$$\pi - \frac{{\sin 4\pi k}}{{4k}}$$

Work Step by Step

$$\eqalign{ & \int_0^{2\pi } {{{\sin }^2}kx} dx \cr & {\text{identity si}}{{\text{n}}^2}\theta = \frac{{1 - \cos 2\theta }}{2} \cr & = \int_0^{2\pi } {\frac{{1 - \cos 2kx}}{2}} dx \cr & = \int_0^{2\pi } {\left( {\frac{1}{2} - \frac{{\cos 2kx}}{2}} \right)} dx \cr & {\text{find antiderivatives}} \cr & = \left[ {\frac{x}{2} - \frac{{\sin 2kx}}{{2\left( {2k} \right)}}} \right]_0^{2\pi } \cr & = \left[ {\frac{x}{2} - \frac{{\sin 2kx}}{{4k}}} \right]_0^{2\pi } \cr & {\text{fundamental theorem of calculus}} \cr & = \left[ {\frac{{2\pi }}{2} - \frac{{\sin 4\pi k}}{{4k}}} \right] - \left[ {\frac{0}{2} - \frac{{\sin 2k\left( 0 \right)}}{{4k}}} \right] \cr & {\text{simplifying}} \cr & = \left[ {\frac{{2\pi }}{2} - \frac{{\sin 4\pi k}}{{4k}}} \right] - \left[ 0 \right] \cr & = \pi - \frac{{\sin 4\pi k}}{{4k}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.