Answer
$$\frac{{{{\tan }^3}x}}{3} + C$$
Work Step by Step
$$\eqalign{
& \int {{{\tan }^2}x{{\sec }^2}x} dx \cr
& {\text{substitute }}u = \tan x,{\text{ }}du = {\sec ^2}xdx \cr
& = \int {{u^2}du} \cr
& {\text{find the antiderivative by the power rule}} \cr
& = \frac{{{u^3}}}{3} + C \cr
& {\text{write in terms of }}x,{\text{ replace }}u = \tan x \cr
& = \frac{{{{\tan }^3}x}}{3} + C \cr} $$