Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.3 Integrating Trigonometric Functions - Exercises Set 7.3 - Page 507: 26

Answer

$$\frac{1}{3}\ln \left| {\sin 3x} \right| + C$$

Work Step by Step

$$\eqalign{ & \int {\cot 3x} dx \cr & = \int {\frac{{\cos 3x}}{{\sin 3x}}} dx \cr & {\text{substitute }}u = \sin 3x,{\text{ }}du = 3\cos 3xdx \cr & = \int {\frac{{\cos 3x}}{{\sin 3x}}} dx = \int {\frac{{1/3}}{u}} du \cr & = \frac{1}{3}\int {\frac{1}{u}} du \cr & {\text{find the antiderivative }} \cr & = \frac{1}{3}\ln \left| u \right| + C \cr & {\text{write in terms of }}x,{\text{ replace }}u = \sin 3x \cr & = \frac{1}{3}\ln \left| {\sin 3x} \right| + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.