Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.3 Integrating Trigonometric Functions - Exercises Set 7.3 - Page 507: 16

Answer

$$ - \frac{{3{{\cos }^{4/3}}x}}{4} + C$$

Work Step by Step

$$\eqalign{ & \int {{{\cos }^{1/3}}x\sin x} dx \cr & {\text{substitute }}u = \cos x,{\text{ }}du = - \sin xdx \cr & \int {{{\cos }^{1/3}}x} \sin xdx = \int {{u^{1/3}}\left( { - du} \right)} \cr & = - \int {{u^{1/3}}du} \cr & {\text{find the antiderivative by the power rule}} \cr & = - \frac{{{u^{4/3}}}}{{4/3}} + C \cr & = - \frac{{3{u^{4/3}}}}{4} + C \cr & {\text{write in terms of }}x,{\text{ replace }}u = \cos x \cr & = - \frac{{3{{\left( {\cos x} \right)}^{4/3}}}}{4} + C \cr & = - \frac{{3{{\cos }^{4/3}}x}}{4} + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.