Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.3 Integrating Trigonometric Functions - Exercises Set 7.3 - Page 507: 15

Answer

$$ - \frac{1}{3}\cos \frac{3}{2}x - \cos \frac{1}{2}x + C$$

Work Step by Step

$$\eqalign{ & \int {\sin x\cos \left( {x/2} \right)} dx \cr & {\text{product }}\sin mx\cos nx = \frac{1}{2}\left( {\sin \left( {\left( {m - n} \right)x} \right) + \sin \left( {\left( {m + n} \right)x} \right)} \right) \cr & \sin x\cos \left( {x/2} \right) = \frac{1}{2}\left( {\sin \left( {\left( {1 - \frac{1}{2}} \right)x} \right) + \sin \left( {\left( {1 + \frac{1}{2}} \right)x} \right)} \right) \cr & \sin x\cos \left( {x/2} \right) = \frac{1}{2}\left( { - \sin \left( {\frac{1}{2}x} \right) + \sin \left( {\frac{3}{2}x} \right)} \right) \cr & \int {\sin x\cos \left( {x/2} \right)} dx = \frac{1}{2}\int {\left( {\sin \frac{3}{2}x - \sin \frac{1}{2}x} \right)} dx \cr & {\text{sum rule}} \cr & = \frac{1}{2}\int {\sin \frac{3}{2}x} dx - \frac{1}{2}\int {\sin \frac{1}{2}x} dx \cr & {\text{find antiderivatives}} \cr & = \frac{1}{2}\left( { - \frac{2}{3}\cos \frac{3}{2}x} \right) - \frac{1}{2}\left( {2\cos \frac{1}{2}x} \right) + C \cr & = - \frac{1}{3}\cos \frac{3}{2}x - \cos \frac{1}{2}x + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.