Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.3 Integrating Trigonometric Functions - Exercises Set 7.3 - Page 507: 24

Answer

$$ - \frac{1}{5}\ln \left| {\cos 5x} \right| + C$$

Work Step by Step

$$\eqalign{ & \int {\tan 5x} dx \cr & = \int {\frac{{\sin 5x}}{{\cos 5x}}} dx \cr & {\text{substitute }}u = \cos 5x,{\text{ }}du = - 5\sin 5xdx \cr & \int {\frac{{\sin 5x}}{{\cos 5x}}} dx = \int {\frac{{ - 1/5}}{u}} du \cr & = - \frac{1}{5}\int {\frac{1}{u}} du \cr & {\text{find the antiderivative }} \cr & = - \frac{1}{5}\ln \left| u \right| + C \cr & {\text{write in terms of }}x,{\text{ replace }}u = \cos 5x \cr & = - \frac{1}{5}\ln \left| {\cos 5x} \right| + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.