Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.3 Integrating Trigonometric Functions - Exercises Set 7.3 - Page 507: 48

Answer

$$\frac{{\sqrt 2 - 1}}{\pi }$$

Work Step by Step

$$\eqalign{ & \int_0^{1/4} {\sec \pi x\tan \pi x} dx \cr & {\text{Write the integrand as}} \cr & = \frac{1}{\pi }\int_0^{1/4} {\left( {\sec \pi x} \right)\left( {\tan \pi x} \right)} \left( \pi \right)dx \cr & {\text{Using the formula }}\int {\sec u\tan u} du = \sec u + C \cr & = \frac{1}{\pi }\left( {\sec \pi x} \right)_0^{1/4} \cr & {\text{Evaluate and simplify}} \cr & = \frac{1}{\pi }\left( {\sec \frac{\pi }{4} - \sec 0} \right) \cr & = \frac{1}{\pi }\left( {\sqrt 2 - 1} \right) \cr & = \frac{{\sqrt 2 - 1}}{\pi } \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.