Answer
$\frac{\sqrt[5]{8125}}{5x}$
Work Step by Step
The given expression is
$=\sqrt[5]{\frac{13}{5x^5}}$
Multiply by $\sqrt[5]{\frac{5^4}{5^4}}$.
$=\sqrt[5]{\frac{13}{5x^5}}\cdot \sqrt[5]{\frac{5^4}{5^4}}$
Use product property of roots.
$=\sqrt[5]{\frac{13\cdot 5^4}{5x^5\cdot 5^4}}$
Simplify.
$=\sqrt[5]{\frac{13\cdot 5^4}{5^5x^5}}$
Use quotient property of roots.
$=\frac{\sqrt[5]{13\cdot 5^4}}{\sqrt[5]{5^5x^5}}$
Simplify.
$=\frac{\sqrt[5]{8125}}{5x}$