Answer
$22\sqrt[3]{2t}$
Work Step by Step
The given expression is
$=6\sqrt[3]{128t}-2\sqrt[3]{2t}$
Factor as cube terms.
$=6\sqrt[3]{64\cdot 2t}-2\sqrt[3]{2t}$
Use product property of square roots.
$=6\sqrt[3]{64}\cdot \sqrt[3]{2t}-2\sqrt[3]{2t}$
Use $\sqrt [3]{64}=4$.
$=6\cdot 4\sqrt[3]{2t}-2\sqrt[3]{2t}$
$= 24\sqrt[3]{2t}-2\sqrt[3]{2t}$
Use distributive property.
$= (24-2)\sqrt[3]{2t}$
Subtract.
$=22\sqrt[3]{2t}$