Big Ideas Math - Algebra 1, A Common Core Curriculum

Published by Big Ideas Learning LLC
ISBN 10: 978-1-60840-838-2
ISBN 13: 978-1-60840-838-2

Chapter 9 - Solving Quadratic Equations - 9.1 - Properties of Radicals - Exercises - Page 487: 86

Answer

$13y\sqrt{21}$.

Work Step by Step

The given expression is $=\sqrt{7y}(\sqrt{27y}+5\sqrt{12y})$ Factor as square terms. $=\sqrt{7y}(\sqrt{9\cdot 3y}+5\sqrt{4\cdot 3y})$ Use product property of square roots. $=\sqrt{7y}(\sqrt{9}\cdot \sqrt{3y}+5\sqrt{4}\cdot \sqrt{3y})$ Simplify. $=\sqrt{7y}(3 \sqrt{3y}+5\cdot 2\sqrt{3y})$ $=\sqrt{7y}(3 \sqrt{3y}+10\sqrt{3y})$ Factor out $\sqrt{3y}$. $=\sqrt{7y}\cdot \sqrt{3y}(3+10 )$ Simplify. $=\sqrt{7y}\cdot \sqrt{3y}(13 )$ Use product property of square roots. $=\sqrt{7y\cdot 3y}(13)$ Simplify. $=\sqrt{21y^2}(13)$ Use product property of square roots. $=\sqrt{21}\cdot \sqrt{y^2}(13)$ $=\sqrt{21}\cdot y(13)$ $=13y\sqrt{21}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.