Answer
$5\sqrt{ 15}$
Work Step by Step
The given expression is
$=(\sqrt{3}+\sqrt{48})(\sqrt{20}-\sqrt{5})$
Factor as square terms.
$=(\sqrt{3}+\sqrt{16\cdot 3})(\sqrt{4\cdot 5}-\sqrt{5})$
Use product property of square roots.
$=(\sqrt{3}+\sqrt{16}\cdot \sqrt{3})(\sqrt{4}\cdot \sqrt{5}-\sqrt{5})$
Simplify.
$=(\sqrt{3}+4\cdot \sqrt{3})(2\cdot \sqrt{5}-\sqrt{5})$
Factor out $\sqrt{3}$ and $\sqrt{5}$.
$=\sqrt{3}\sqrt{5}(1+4)(2-1)$
Simplify.
$=\sqrt{3}\sqrt{5}(5)(1)$
Use product property of square roots.
$=5\sqrt{3\cdot 5}$
$=5\sqrt{ 15}$