Big Ideas Math - Algebra 1, A Common Core Curriculum

Published by Big Ideas Learning LLC
ISBN 10: 978-1-60840-838-2
ISBN 13: 978-1-60840-838-2

Chapter 9 - Solving Quadratic Equations - 9.1 - Properties of Radicals - Exercises - Page 487: 85

Answer

$-2\sqrt{30x}$

Work Step by Step

The given expression is $=\sqrt{5}(2\sqrt{6x}-\sqrt{96x})$ Factor as square terms. $=\sqrt{5}(2\sqrt{6x}-\sqrt{16\cdot 6x})$ Use product property of square roots. $=\sqrt{5}(2\sqrt{6x}-\sqrt{16}\cdot \sqrt{6x})$ Simplify. $=\sqrt{5}(2\sqrt{6x}-4 \sqrt{6x})$ Factor out $\sqrt{6x}$. $=\sqrt{5}\cdot \sqrt{6x}(2-4 )$ Simplify. $=\sqrt{5}\cdot \sqrt{6x}(-2)$ Use product property of square roots. $=\sqrt{5\cdot 6x}(-2)$ Simplify. $=\sqrt{30x}(-2)$ $=-2\sqrt{30x}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.