Answer
$3\sqrt[3]{12}$
Work Step by Step
The given expression is
$=\sqrt[3]{3}(\sqrt[3]{4}+\sqrt[3]{32})$
Factor as cube term.
$=\sqrt[3]{3}(\sqrt[3]{4}+\sqrt[3]{8\cdot 4})$
Use product property of cube roots.
$=\sqrt[3]{3}(\sqrt[3]{4}+\sqrt[3]{8}\cdot \sqrt[3]{4})$
Simplify.
$=\sqrt[3]{3}(\sqrt[3]{4}+2\cdot \sqrt[3]{4})$
Factor out $\sqrt[3]{4}$.
$=\sqrt[3]{3}\sqrt[3]{4}(1+2)$
Simplify.
$=\sqrt[3]{3}\sqrt[3]{4}(3)$
Use product property of cube roots.
$=3\sqrt[3]{3\cdot 4}$
$=3\sqrt[3]{12}$