Big Ideas Math - Algebra 1, A Common Core Curriculum

Published by Big Ideas Learning LLC
ISBN 10: 978-1-60840-838-2
ISBN 13: 978-1-60840-838-2

Chapter 9 - Solving Quadratic Equations - 9.1 - Properties of Radicals - Exercises - Page 487: 89

Answer

$3\sqrt[3]{12}$

Work Step by Step

The given expression is $=\sqrt[3]{3}(\sqrt[3]{4}+\sqrt[3]{32})$ Factor as cube term. $=\sqrt[3]{3}(\sqrt[3]{4}+\sqrt[3]{8\cdot 4})$ Use product property of cube roots. $=\sqrt[3]{3}(\sqrt[3]{4}+\sqrt[3]{8}\cdot \sqrt[3]{4})$ Simplify. $=\sqrt[3]{3}(\sqrt[3]{4}+2\cdot \sqrt[3]{4})$ Factor out $\sqrt[3]{4}$. $=\sqrt[3]{3}\sqrt[3]{4}(1+2)$ Simplify. $=\sqrt[3]{3}\sqrt[3]{4}(3)$ Use product property of cube roots. $=3\sqrt[3]{3\cdot 4}$ $=3\sqrt[3]{12}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.