Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 8: Techniques of Integration - Section 8.4 - Trigonometric Substitutions - Exercises 8.4 - Page 467: 9

Answer

$\dfrac{1}{2} \ln|\dfrac{2 \theta}{7} +\dfrac{\sqrt {4\theta^2-49}}{7}|+C$

Work Step by Step

Plug $\theta=\dfrac{7}{2} \sec \theta \implies d \theta=\dfrac{7}{2} \sec\theta \tan \theta d \theta $ Then, $\int \dfrac{\dfrac{7}{2} \sec\theta \tan \theta d \theta}{\sqrt{4(\dfrac{49}{4} \sec^2 \theta-49)}} = \dfrac{1}{2} \int \sec \theta d \theta$ Substitute $\sec \theta =\dfrac{2 \theta}{7}$ $ \dfrac{1}{2} \ln |\sec\theta + \tan \theta|+C=\dfrac{1}{2} \ln|\dfrac{2 \theta}{7} +\dfrac{\sqrt {4\theta^2-49}}{7}|+C$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.