Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 8: Techniques of Integration - Section 8.4 - Trigonometric Substitutions - Exercises 8.4 - Page 467: 41

Answer

$$\sqrt {{x^2} - 1} + C $$

Work Step by Step

$$\eqalign{ & \int {\frac{{xdx}}{{\sqrt {{x^2} - 1} }}} \cr & {\text{Integrate by substitution method}} \cr & {\text{Let }}u = {x^2} - 1,\,\,\,\,du = 2xdx,\,\,\,\,dx = \frac{{du}}{{2x}} \cr & {\text{Then}}{\text{,}} \cr & \int {\frac{{xdx}}{{\sqrt {{x^2} - 1} }}} = \int {\frac{x}{{\sqrt u }}\left( {\frac{{du}}{{2x}}} \right)} \cr & {\text{Cancel common factor }}x \cr & = \frac{1}{2}\int {\frac{1}{{\sqrt u }}du} \cr & = \frac{1}{2}\int {\frac{1}{{{u^{1/2}}}}du} \cr & = \frac{1}{2}\int {{u^{ - 1/2}}du} \cr & {\text{integrating}} \cr & = \frac{1}{2}\left( {\frac{{{u^{1/2}}}}{{1/2}}} \right) + C \cr & = \sqrt u + C \cr & {\text{write in terms of }}x;{\text{ replace }}u = {x^2} - 1 \cr & = \sqrt {{x^2} - 1} + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.