Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 8: Techniques of Integration - Section 8.4 - Trigonometric Substitutions - Exercises 8.4 - Page 467: 20

Answer

$$ - \frac{{\sqrt {9 - {w^2}} }}{w} - {\sin ^{ - 1}}\left( {\frac{w}{3}} \right) + C $$

Work Step by Step

$$\eqalign{ & \int {\frac{{\sqrt {9 - {w^2}} }}{{{w^2}}}} dw \cr & {\text{Using Trigonometric Substitutions}} \cr & {\text{We set}}{\text{, }}w = 3\sin \theta,{\text{ }}dw = 3\cos \theta d\theta \cr & {\text{With these substitutions}}{\text{, we have}} \cr & \int {\frac{{\sqrt {9 - {w^2}} }}{{{w^2}}}} dw = \int {\frac{{\sqrt {9 - {{\left( {3\sin \theta } \right)}^2}} }}{{{{\left( {3\sin \theta } \right)}^2}}}} \left( {3\cos \theta d\theta } \right) \cr & = \int {\frac{{\sqrt {9 - 9{{\sin }^2}\theta } }}{{9{{\sin }^2}\theta }}} \left( {3\cos \theta d\theta } \right) \cr & = \int {\frac{{\sqrt {9\left( {1 - {{\sin }^2}\theta } \right)} }}{{9{{\sin }^2}\theta }}} \left( {3\cos \theta d\theta } \right) \cr & = \int {\frac{{3\sqrt {1 - {{\sin }^2}\theta } }}{{9{{\sin }^2}\theta }}} \left( {3\cos \theta d\theta } \right) \cr & {\text{use the fundamental identity }}{\cos ^2}\theta + {\sin ^2}\theta = 1 \cr & = \int {\frac{{3\sqrt {{{\cos }^2}\theta } }}{{9{{\sin }^2}\theta }}} \left( {3\cos \theta d\theta } \right) \cr & {\text{simplifying}} \cr & = \int {\frac{{3\cos \theta }}{{9{{\sin }^2}\theta }}} \left( {3\cos \theta d\theta } \right) \cr & = \int {\frac{{{{\cos }^2}\theta }}{{{{\sin }^2}\theta }}d\theta } \cr & {\text{Integrate}} \cr & = \int {{{\cot }^2}\theta d\theta } \cr & {\text{use the fundamental identity co}}{{\text{t}}^2}\theta = {\csc ^2}\theta - 1 \cr & = \int {\left( {{{\csc }^2}\theta - 1} \right)} d\theta \cr & {\text{Integrate}} \cr & = - \cot \theta - \theta + C \cr & {\text{write in terms of }}x,{\text{ }}\cot \theta = \frac{{\sqrt {9 - {w^2}} }}{w}{\text{ and }}\theta = {\sin ^{ - 1}}\left( {\frac{w}{3}} \right) \cr & = - \frac{{\sqrt {9 - {w^2}} }}{w} - {\sin ^{ - 1}}\left( {\frac{w}{3}} \right) + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.