Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 8: Techniques of Integration - Section 8.4 - Trigonometric Substitutions - Exercises 8.4 - Page 467: 7

Answer

$\dfrac{25}{2} \sin^{-1}(t/5)+\dfrac{t\sqrt {25 -t^2}}{2} +C$

Work Step by Step

Use formula: $\cos^2 \theta=1-\sin^2 \theta$ ; $\cos^2 \theta =\dfrac{1}{2}+\dfrac{1}{2} \cos ( 2\theta )$ Plug $t =5 \sin \theta \implies dt=5 \cos \theta d \theta $ Then, $\int \sqrt{25-25 \sin^2 \theta } (5 \cos \theta d \theta ) =\int \sqrt{(25(1-\sin^2 \theta) } (5 \cos \theta d \theta ) $ or, $\int 25 \cos^2 \theta = 25\int (\dfrac{1}{2}+\dfrac{1}{2} \cos ( 2\theta ))d \theta$ Now, integrate and plug in $ \sin \theta =t/5 \implies \theta =\sin^{-1}(t/5)$ Thus, $ 25 (\dfrac{1}{2} \theta+\dfrac{1}{4} \sin ( 2\theta ))d \theta +C=(\dfrac{25}{2}) \theta+(\dfrac{25}{4}) (2 \sin \theta \cos \theta) d \theta +C$ Thus, $\int \sqrt{25-25 \sin^2 \theta } (5 \cos \theta d \theta ) =\dfrac{25}{2} \sin^{-1}(t/5)+\dfrac{t\sqrt {25 -t^2}}{2} +C$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.