Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 8: Techniques of Integration - Section 8.4 - Trigonometric Substitutions - Exercises 8.4 - Page 467: 43

Answer

$$\frac{1}{2}\ln \left| {{x^2} + \sqrt {1 + {x^4}} } \right| + C $$

Work Step by Step

$$\eqalign{ & \int {\frac{{xdx}}{{\sqrt {1 + {x^4}} }}} \cr & = \int {\frac{{xdx}}{{\sqrt {1 + {{\left( {{x^2}} \right)}^2}} }}} \cr & {\text{Set }}y = {x^2},\,\,\,\,dy = 2xdx \cr & \int {\frac{{xdx}}{{\sqrt {1 + {{\left( {{x^2}} \right)}^2}} }}} = \frac{1}{2}\int {\frac{{dy}}{{\sqrt {1 + {y^2}} }}} \cr & {\text{Using Trigonometric Substitutions,}} \cr & {\text{we set}}{\text{, }}y = \tan \theta,{\text{ }}dy = {\sec ^2}\theta d\theta \cr & {\text{With these substitutions}}{\text{, we have}} \cr & \frac{1}{2}\int {\frac{{dy}}{{\sqrt {1 + {y^2}} }}} = \frac{1}{2}\int {\frac{{{{\sec }^2}\theta }}{{\sqrt {1 + {{\tan }^2}\theta } }}} d\theta \cr & {\text{use the fundamental identity }}{\sec ^2}\theta - 1 = {\tan ^2}\theta \cr & = \frac{1}{2}\int {\frac{{{{\sec }^2}\theta }}{{\sqrt {{{\sec }^2}\theta } }}} d\theta \cr & {\text{simplifying}} \cr & = \frac{1}{2}\int {\sec \theta d\theta } \cr & {\text{Integrate}} \cr & = \frac{1}{2}\ln \left| {\sec \theta + \tan \theta } \right| + C \cr & {\text{write in terms of }}y,{\text{ }}\tan \theta = y{\text{ and sec}}\theta = \sqrt {1 + {y^2}} \cr & = \frac{1}{2}\ln \left| {y + \sqrt {1 + {y^2}} } \right| + C \cr & {\text{write in terms of }}x,{\text{ replace }}y = {x^2} \cr & = \frac{1}{2}\ln \left| {{x^2} + \sqrt {1 + {x^4}} } \right| + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.