Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 8: Techniques of Integration - Section 8.4 - Trigonometric Substitutions - Exercises 8.4 - Page 467: 37

Answer

$$\frac{\pi }{6}$$

Work Step by Step

$$\eqalign{ & \int_{1/12}^{1/4} {\frac{{2dt}}{{\sqrt t + 4t\sqrt t }}} \cr & {\text{Factoring the denominator}} \cr & = \int_{1/12}^{1/4} {\frac{{2dt}}{{\sqrt t \left( {1 + 4t} \right)}}} \cr & {\text{Write as}} \cr & = \int_{1/12}^{1/4} {\frac{{2dt}}{{\sqrt t \left( {1 + {{\left( {2\sqrt t } \right)}^2}} \right)}}} \cr & {\text{We set}}{\text{, }}2\sqrt t = \tan \theta,{\text{ }}\frac{1}{{\sqrt t }}dt = {\sec ^2}\theta d\theta \cr & \theta = {\tan ^{ - 1}}\left( {{\text{ }}2\sqrt t } \right) \cr & {\text{The new limits on }}\theta {\text{ are found as follows}} \cr & \,\,\,\,\,\,{\text{If }}t = 1/4,{\text{ then }}\theta = {\tan ^{ - 1}}\left( {{\text{ }}2\sqrt {1/4} } \right) = \pi /4 \cr & \,\,\,\,\,\,{\text{If }}t = 1/2,{\text{ then }}\theta = {\tan ^{ - 1}}\left( {{\text{ }}2\sqrt {1/12} } \right) = \pi /6 \cr & {\text{With these substitutions}}{\text{, we have}} \cr & \int_{1/12}^{1/4} {\frac{{2dt}}{{\sqrt t \left( {1 + {{\left( {2\sqrt t } \right)}^2}} \right)}}} = \int_{\pi /6}^{\pi /4} {\frac{{2{{\sec }^2}\theta d\theta }}{{1 + {{\tan }^2}\theta }}} \cr & = 2\int_{\pi /6}^{\pi /4} {\frac{{{{\sec }^2}\theta d\theta }}{{1 + {{\tan }^2}\theta }}} \cr & {\text{use the fundamental identity }}{\tan ^2}x + 1 = {\sec ^2}x \cr & = 2\int_{\pi /6}^{\pi /4} {\frac{{{{\sec }^2}\theta d\theta }}{{{{\sec }^2}\theta }}} \cr & = 2\int_{\pi /6}^{\pi /4} {\theta d\theta } \cr & {\text{integrating}} \cr & = 2\left( \theta \right)_{\pi /6}^{\pi /4} \cr & = 2\left( {\frac{\pi }{4} - \frac{\pi }{6}} \right) \cr & = \frac{\pi }{6} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.