Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 8: Techniques of Integration - Section 8.4 - Trigonometric Substitutions - Exercises 8.4 - Page 467: 46

Answer

$$\frac{2}{3}{\sin ^{ - 1}}{x^{3/2}} + C $$

Work Step by Step

$$\eqalign{ & \int {\sqrt {\frac{x}{{1 - {x^3}}}} } dx \cr & \int {\frac{{\sqrt x }}{{\sqrt {1 - {x^3}} }}} dx \cr & {\text{We use the hint }}\cr & u = {x^{3/2}},\,\,\,\,\,x = {u^{2/3}},\,\,\,\,\,dx = \frac{2}{3}{u^{ - 1/3}}du \cr & {\text{Then}}{\text{,}} \cr & \int {\frac{{\sqrt x }}{{\sqrt {1 - {x^3}} }}} dx = \int {\frac{{\sqrt {{u^{2/3}}} }}{{\sqrt {1 - {{\left( {{u^{2/3}}} \right)}^3}} }}} \left( {\frac{2}{3}{u^{ - 1/3}}} \right)du \cr & {\text{Simplifying, we get:}} \cr & = \int {\frac{{{u^{1/3}}}}{{\sqrt {1 - {u^2}} }}} \left( {\frac{2}{3}{u^{ - 1/3}}} \right)du \cr & = \frac{2}{3}\int {\frac{{du}}{{\sqrt {1 - {u^2}} }}} \cr & {\text{Integrating}}{\text{, use }}\int {\frac{{dx}}{{\sqrt {1 - {x^2}} }}} = {\sin ^{ - 1}}x + C \cr & = \frac{2}{3}{\sin ^{ - 1}}u + C \cr & {\text{Write in terms of }}x{\text{; replace }}u = {x^{3/2}} \cr & = \frac{2}{3}{\sin ^{ - 1}}{x^{3/2}} + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.