Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 8: Techniques of Integration - Section 8.4 - Trigonometric Substitutions - Exercises 8.4 - Page 467: 5

Answer

$\dfrac{\pi}{6}$

Work Step by Step

Plug $x =3 \sin \theta \implies dx=3 \cos \theta d \theta $ Then $\int \dfrac{3 \cos \theta d \theta }{\sqrt{9-9 \sin^2 \theta}} = \int \dfrac{3 \cos \theta d \theta }{\sqrt{9 \cos^2 \theta}}=\int d \theta$ and $\int_{0}^{3/2} d \theta=[sin^{-1} (x/3)]_{0}^{3/2}$ Thus, $\int \dfrac{3 \cos \theta d \theta }{\sqrt{9-9 \sin^2 \theta}} =\dfrac{\pi}{6}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.