Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 8: Techniques of Integration - Section 8.4 - Trigonometric Substitutions - Exercises 8.4 - Page 467: 51

Answer

$$ y = \frac{3}{2}{\tan ^{ - 1}}\left( {\frac{x}{2}} \right) - \frac{3}{8}\pi $$

Work Step by Step

$$\eqalign{ & \left( {{x^2} + 4} \right)\frac{{dy}}{{dx}} = 3,\,\,\,\,y\left( 2 \right) = 0 \cr & {\text{Separate the variables}} \cr & \frac{{dy}}{{dx}} = \frac{3}{{{x^2} + 4}} \cr & {\text{integrate both sides}} \cr & y = \int {\frac{3}{{{x^2} + 4}}} dx \cr & y = \frac{3}{2}{\tan ^{ - 1}}\left( {\frac{x}{2}} \right) + C\,\,\,\left( {\bf{1}} \right) \cr & \cr & {\text{use initial condition }}y\left( 2 \right) = 0 \cr & 0 = \frac{3}{2}{\tan ^{ - 1}}\left( {\frac{2}{2}} \right) + C \cr & 0 = \frac{3}{2}\left( {\frac{\pi }{4}} \right) + C \cr & C = - \frac{3}{8}\pi \cr & \cr & {\text{Then}}{\text{, substituting }}C = - \frac{3}{8}\pi {\text{ in }}\left( {\bf{1}} \right) \cr & y = \frac{3}{2}{\tan ^{ - 1}}\left( {\frac{x}{2}} \right) - \frac{3}{8}\pi \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.