Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 8: Techniques of Integration - Section 8.4 - Trigonometric Substitutions - Exercises 8.4 - Page 467: 10

Answer

$\ln|\dfrac{5x}{3} +\dfrac{\sqrt {25x^2-9}}{3}|+C$

Work Step by Step

Let us consider $x =\dfrac{3}{5} \sec \theta $ and $dx=\dfrac{3}{5} \sec\theta \tan \theta d \theta $ Then $\int \dfrac{5(\dfrac{3}{5} \sec\theta \tan \theta d \theta)}{\sqrt{25(\dfrac{9}{25} \sec^2 \theta-9)}} = \int \sec \theta d \theta=\ln |\sec\theta + \tan \theta|+C$ Substitute $\sec \theta =\dfrac{5x}{3}$ $ \ln |\sec\theta + \tan \theta|+C= \ln|\dfrac{5x}{3} +\dfrac{\sqrt {25x^2-9}}{3}|+C$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.