Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 8: Techniques of Integration - Section 8.4 - Trigonometric Substitutions - Exercises 8.4 - Page 467: 22

Answer

$$\frac{1}{3}{\left( {{x^2} - 4} \right)^{3/2}} + C $$

Work Step by Step

$$\eqalign{ & \int x \sqrt {{x^2} - 4} dx \cr & {\text{We set}}{\text{, }}x = 2\sec \theta,{\text{ }}dx = 2\sec \theta \tan \theta d\theta \cr & {\text{With these substitutions}}{\text{, we have}} \cr & \int x \sqrt {{x^2} - 4} dx = \int {2\sec \theta } \sqrt {{{\left( {2\sec \theta } \right)}^2} - 4} \left( {2\sec \theta \tan \theta d\theta } \right) \cr & = \int {4{{\sec }^2}\theta \tan \theta } \sqrt {4{{\sec }^2}\theta - 4} d\theta \cr & = \int {4{{\sec }^2}\theta \tan \theta } \sqrt {4\left( {{{\sec }^2}\theta - 1} \right)} d\theta \cr & {\text{use the fundamental identity }}{\sec ^2}\theta - 1 = {\tan ^2}\theta \cr & = \int {4{{\sec }^2}\theta \tan \theta } \sqrt {4{{\tan }^2}\theta } d\theta \cr & {\text{simplifying}} \cr & = \int {8{{\sec }^2}\theta {{\tan }^2}\theta } d\theta \cr & {\text{integrate}} \cr & = 8\left( {\frac{{{{\tan }^3}\theta }}{3}} \right) + C \cr & = \frac{8}{3}{\tan ^3}\theta + C \cr & {\text{write in terms of }}x,{\text{ tan}}\theta = \frac{{\sqrt {{x^2} - 4} }}{2} \cr & = \frac{8}{3}{\left( {\frac{{\sqrt {{x^2} - 4} }}{2}} \right)^3} + C \cr & = \frac{1}{3}{\left( {{x^2} - 4} \right)^{3/2}} + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.