Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 8: Techniques of Integration - Section 8.4 - Trigonometric Substitutions - Exercises 8.4 - Page 467: 1

Answer

$\ln |\dfrac{\sqrt{9+x^2}}{3}+\dfrac{x}{3}|+C$

Work Step by Step

Plug $x =3 \tan \theta \implies dx= 3 \sec^2 \theta d \theta $ Then, $\int \dfrac{3 \sec^2 \theta d \theta }{\sqrt {9+9 \tan^2 \theta}} =\int \dfrac{3 \sec^2 \theta d \theta }{\sqrt {9 \sec^2 \theta}}$ or, $\int \sec \theta d \theta=\ln |\sec \theta +\tan \theta|+C$ We have $ x =3 \tan \theta \implies \tan \theta =(\dfrac{x}{3})$ Thus, $\ln |\sec \theta +\tan \theta|+C=\ln |\dfrac{\sqrt{9+x^2}}{3}+(\dfrac{x}{3})|+C$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.