Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 8: Techniques of Integration - Section 8.4 - Trigonometric Substitutions - Exercises 8.4 - Page 467: 53

Answer

$$A = \frac{{3\pi }}{4}$$

Work Step by Step

$$\eqalign{ & y = \frac{{\sqrt {9 - {x^2}} }}{3} \cr & {\text{The area is enclosed by }}y{\text{ and the first quadrant}}{\text{; thus the area is }} \cr & \,\,\,\,\,A = \int_0^3 {\frac{{\sqrt {9 - {x^2}} }}{3}} dx \cr & {\text{Use the Trigonometric Substitutions:}} \cr & {\text{We set}}{\text{, }}x = 3\sin \theta ,{\text{ }}dx = 3\cos \theta d\theta \cr & {\text{ }}x = 3\sin \theta ,\,\,\,\theta = {\sin ^{ - 1}}\left( {\frac{x}{3}} \right) \cr & x = 0 \to \theta = {\sin ^{ - 1}}\left( {\frac{0}{3}} \right) = 0 \cr & x = 3 \to \theta = {\sin ^{ - 1}}\left( {\frac{3}{3}} \right) = \frac{\pi }{2} \cr & {\text{With these substitutions}}{\text{, we have}} \cr & \,\,\,\,\,A = \int_0^{\pi /2} {\frac{{\sqrt {9 - {{\left( {3\sin \theta } \right)}^2}} }}{3}} \left( {3\cos \theta } \right)d\theta \cr & \,\,\,\,\,A = \int_0^{\pi /2} {\frac{{\sqrt {9 - 9{{\sin }^2}\theta } }}{3}} \left( {3\cos \theta } \right)d\theta \cr & \,\,\,\,\,A = \int_0^{\pi /2} {3\sqrt {1 - {{\sin }^2}\theta } } \left( {\cos \theta } \right)d\theta \cr & \,\,\,\,\,A = 3\int_0^{\pi /2} {\sqrt {{{\cos }^2}\theta } } \left( {\cos \theta } \right)d\theta \cr & \,\,\,\,\,A = 3\int_0^{\pi /2} {{{\cos }^2}\theta } d\theta \cr & \,\,\,\,\,A = 3\int_0^{\pi /2} {\left( {\frac{{1 + \cos 2\theta }}{2}} \right)} d\theta \cr & \,\,\,\,\,A = \frac{3}{2}\int_0^{\pi /2} {\left( {1 + \cos 2\theta } \right)} d\theta \cr & {\text{Integrating, we get}} \cr & \,\,\,\,\,A = \frac{3}{2}\left( {\theta + \frac{1}{2}\sin 2\theta } \right)_0^{\pi /2} \cr & \,\,\,\,\,A = \frac{3}{2}\left( {\frac{\pi }{2} + \frac{1}{2}\sin 2\left( {\frac{\pi }{2}} \right)} \right) - \frac{3}{2}\left( {0 + \frac{1}{2}\sin 2\left( 0 \right)} \right) \cr & \,\,\,\,\,A = \frac{3}{2}\left( {\frac{\pi }{2} + 0} \right) - \frac{3}{2}\left( 0 \right) \cr & \,\,\,\,\,A = \frac{{3\pi }}{4} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.