Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 8: Techniques of Integration - Section 8.4 - Trigonometric Substitutions - Exercises 8.4 - Page 467: 23

Answer

$$4\sqrt 3 - \frac{{4\pi }}{3}$$

Work Step by Step

$$\eqalign{ & \int_0^{\sqrt 3 /2} {\frac{{4{x^2}dx}}{{{{\left( {1 - {x^2}} \right)}^{3/2}}}}} \cr & {\text{We set}}{\text{, }}x = \sin \theta ,{\text{ }}dx = \cos \theta d\theta \cr & {\text{The new limits on }}\theta {\text{ are found as follows}} \cr & \,\,\,\,\,\,{\text{If }}x = \sqrt 3 /2,{\text{ then }}\theta = {\sin ^{ - 1}}\left( {\sqrt 3 /2} \right) = \pi /3 \cr & \,\,\,\,\,\,{\text{If }}x = 0,{\text{ then }}\theta = {\sin ^{ - 1}}\left( 0 \right) = 0 \cr & {\text{With these substitutions}}{\text{, we have}} \cr & \int_0^{\sqrt 3 /2} {\frac{{4{x^2}dx}}{{{{\left( {1 - {x^2}} \right)}^{3/2}}}}} = \int_0^{\pi /3} {\frac{{4{{\left( {\sin \theta } \right)}^2}\cos \theta d\theta }}{{{{\left( {1 - {{\left( {\sin \theta } \right)}^2}} \right)}^{3/2}}}}} \cr & = \int_0^{\pi /3} {\frac{{4{{\sin }^2}\theta \cos \theta d\theta }}{{{{\left( {1 - {{\sin }^2}\theta } \right)}^{3/2}}}}} \cr & {\text{Use the fundamental identity }}{\sin ^2}\theta + {\cos ^2}\theta = 1 \cr & = \int_0^{\pi /3} {\frac{{4{{\sin }^2}\theta \cos \theta d\theta }}{{{{\left( {{{\cos }^2}\theta } \right)}^{3/2}}}}} \cr & = \int_0^{\pi /3} {\frac{{4{{\sin }^2}\theta \cos \theta d\theta }}{{{{\cos }^3}\theta }}} \cr & = \int_0^{\pi /3} {\frac{{4{{\sin }^2}\theta d\theta }}{{{{\cos }^2}\theta }}} \cr & = 4\int_0^{\pi /3} {{{\tan }^2}\theta } d\theta \cr & = 4\int_0^{\pi /3} {\left( {{{\sec }^2}\theta - 1} \right)} d\theta \cr & {\text{Integrating, we get:}} \cr & = 4\left( {\tan \theta - \theta } \right)_0^{\pi /3} \cr & = 4\left( {\tan \left( {\frac{\pi }{3}} \right) - \frac{\pi }{3}} \right) - 4\left( {\tan \left( 0 \right) - 0} \right) \cr & = 4\left( {\sqrt 3 - \frac{\pi }{3}} \right) - 4\left( 0 \right) \cr & = 4\sqrt 3 - \frac{{4\pi }}{3} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.