Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 8: Techniques of Integration - Section 8.4 - Trigonometric Substitutions - Exercises 8.4 - Page 467: 40

Answer

$${\tan ^{ - 1}}x + C $$

Work Step by Step

$$\eqalign{ & \int {\frac{{dx}}{{1 + {x^2}}}} \cr & {\text{Using Trigonometric Substitutions}} \cr & {\text{We set}}{\text{, }}x = \tan \theta,{\text{ }}dx = {\sec ^2}\theta d\theta \cr & {\text{With these substitutions}}{\text{, we have}} \cr & \int {\frac{{dx}}{{1 + {x^2}}}} = \int {\frac{{{{\sec }^2}\theta }}{{1 + \tan {\theta ^2}}}d\theta } \cr & = \int {\frac{{{{\sec }^2}\theta }}{{1 + \tan {\theta ^2}}}\left( {{{\sec }^2}\theta } \right)d\theta } \cr & {\text{use the fundamental identity }}{\sec ^2}\theta - 1 = {\tan ^2}\theta \cr & = \int {\frac{{{{\sec }^2}\theta }}{{{{\sec }^2}\theta }}d\theta } \cr & {\text{simplifying}} \cr & = \int {\theta d\theta } \cr & {\text{Integrate}} \cr & = \theta + C \cr & {\text{write in terms of }}x,{\text{ }}x = \tan \theta \,\,\,\, \Rightarrow \,\,\,\theta = {\tan ^{ - 1}}x \cr & = {\tan ^{ - 1}}x + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.