Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 8: Techniques of Integration - Section 8.4 - Trigonometric Substitutions - Exercises 8.4 - Page 467: 17

Answer

$$\frac{{{{\left( {{x^2} + 4} \right)}^{3/2}}}}{3} - 4\sqrt {{x^2} + 4} + C $$

Work Step by Step

$$\eqalign{ & \int {\frac{{{x^3}dx}}{{\sqrt {{x^2} + 4} }}} \cr & {\text{Use Trigonometric Substitution:}} \cr & {\text{We set}}{\text{, }}x = 2\tan \theta,{\text{ }}dx = 2{\sec ^2}\theta d\theta \cr & {\text{With these substitutions}}{\text{, we have}} \cr & \int {\frac{{{x^3}dx}}{{\sqrt {{x^2} + 4} }}} = \int {\frac{{{{\left( {2\tan \theta } \right)}^3}}}{{\sqrt {4 + {{\left( {2\tan \theta } \right)}^2}} }}} \left( {2{{\sec }^2}\theta } \right)d\theta \cr & = \int {\frac{{8{{\tan }^3}\theta }}{{\sqrt {4\left( {1 + {{\tan }^2}\theta } \right)} }}} \left( {2{{\sec }^2}\theta } \right)d\theta \cr & = \int {\frac{{8{{\tan }^3}\theta }}{{2\sqrt {1 + {{\tan }^2}\theta } }}} \left( {2{{\sec }^2}\theta } \right)d\theta \cr & {\text{use the fundamental identity }}{\sec ^2}\theta - 1 = {\tan ^2}\theta \cr & = 8\int {\frac{{{{\tan }^3}\theta }}{{\sqrt {{{\sec }^2}\theta } }}} \left( {{{\sec }^2}\theta } \right)d\theta \cr & = 8\int {{{\tan }^3}\theta \sec \theta } d\theta \cr & = 8\int {{{\tan }^2}\theta \sec \theta \tan \theta } d\theta \cr & = 8\int {\left( {{{\sec }^2}\theta - 1} \right)\sec \theta \tan \theta } d\theta \cr & {\text{set }}u = \sec \theta,\,\,\,du = \sec \theta \tan \theta d\theta \cr & = 8\int {\left( {{u^2} - 1} \right)} du \cr & {\text{integrating}} \cr & = 8\left( {\frac{{{u^3}}}{3}} \right) - 8u + C \cr & {\text{write in terms of }}\theta, \cr & = \frac{8}{3}{\sec ^3}\theta - 8\sec \theta + C \cr & {\text{write in terms of }}x,{\text{ sec}}\theta = \frac{{\sqrt {{x^2} + 4} }}{2} \cr & = \frac{8}{3}{\left( {\frac{{\sqrt {{x^2} + 4} }}{2}} \right)^3} - 8\left( {\frac{{\sqrt {{x^2} + 4} }}{2}} \right) + C \cr & {\text{simplifying, we get:}} \cr & = \frac{8}{3}\left[ {\frac{{{{\left( {{x^2} + 4} \right)}^{3/2}}}}{8}} \right] - 4\sqrt {{x^2} + 4} + C \cr & = \frac{{{{\left( {{x^2} + 4} \right)}^{3/2}}}}{3} - 4\sqrt {{x^2} + 4} + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.