Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 8: Techniques of Integration - Section 8.4 - Trigonometric Substitutions - Exercises 8.4 - Page 467: 29

Answer

$$2{\tan ^{ - 1}}2x + \frac{{4x}}{{4{x^2} + 1}} + C $$

Work Step by Step

$$\eqalign{ & \int {\frac{{8dx}}{{{{\left( {4{x^2} + 1} \right)}^2}}}} \cr & = 8\int {\frac{1}{{{{\left( {{{\left( {2x} \right)}^2} + 1} \right)}^2}}}dx} \cr & {\text{Use trigonometric substitutions}} \cr & {\text{ 2}}x = \tan \theta,{\text{ }}dx = \frac{1}{2}{\sec ^2}\theta d\theta \cr & {\text{With these substitutions}}{\text{, we have}} \cr & 8\int {\frac{1}{{{{\left( {{{\left( {2x} \right)}^2} + 1} \right)}^2}}}dx} = 8\int {\frac{1}{{{{\left( {{{\tan }^2}\theta + 1} \right)}^2}}}} \left( {\frac{1}{2}{{\sec }^2}\theta } \right)d\theta \cr & {\text{use the fundamental identity }}{\sec ^2}\theta = 1 + {\tan ^2}\theta \cr & = 8\int {\frac{1}{{{{\left( {{{\sec }^2}\theta } \right)}^2}}}} \left( {\frac{1}{2}{{\sec }^2}\theta } \right)d\theta \cr & {\text{simplifying, we get:}} \cr & = 4\int {\frac{1}{{{{\sec }^2}\theta }}} d\theta = 4\int {{{\cos }^2}\theta } d\theta \cr & = 4\int {\left( {\frac{{1 + \cos 2\theta }}{2}} \right)} d\theta \cr & = 2\int {\left( {1 + \cos 2\theta } \right)} d\theta \cr & {\text{integrate}} \cr & = 2\left( {\theta + \frac{1}{2}\sin 2\theta } \right) + C \cr & = 2\left( {\theta + \sin \theta \cos \theta } \right) + C \cr & = 2\theta + 2\sin \theta \cos \theta + C \cr & {\text{write in terms of }}x,\cr & \sin \theta = \frac{{2x}}{{\sqrt {4{x^2} + 1} }},\,\,\,\cr & \cos \theta = \frac{1}{{\sqrt {4{x^2} + 1} }}{\text{ and }}\cr & \theta = {\tan ^{ - 1}}2x \cr & = 2{\tan ^{ - 1}}2x + 2\left( {\frac{{2x}}{{\sqrt {4{x^2} + 1} }}} \right)\left( {\frac{1}{{\sqrt {4{x^2} + 1} }}} \right) + C \cr & = 2{\tan ^{ - 1}}2x + \frac{{4x}}{{4{x^2} + 1}} + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.