Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 8: Techniques of Integration - Section 8.4 - Trigonometric Substitutions - Exercises 8.4 - Page 467: 32

Answer

$$\frac{1}{8}\ln \left( {25 + 4{x^2}} \right) + C $$

Work Step by Step

$$\eqalign{ & \int {\frac{{xdx}}{{25 + 4{x^2}}}} \cr & {\text{Integrate by the substitution method}} \cr & {\text{Let }}u = 25 + 4{x^2},\,\,\,\,du = 8xdx,\,\,\,\,dx = \frac{{du}}{{8x}} \cr & {\text{Then}}{\text{,}} \cr & \int {\frac{{xdx}}{{25 + 4{x^2}}}} = \int {\frac{x}{u}\left( {\frac{{du}}{{8x}}} \right)} \cr & {\text{Cancel the common factor }}x \cr & = \int {\frac{1}{u}} \left( {\frac{{du}}{8}} \right) \cr & = \frac{1}{8}\int {\frac{1}{u}du} \cr & {\text{Integrating, we get:}} \cr & = \frac{1}{8}\ln \left| u \right| + C \cr & {\text{Write in terms of }}x.{\text{ Use }}u = 25 + 4{x^2} \cr & = \frac{1}{8}\ln \left( {25 + 4{x^2}} \right) + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.