Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 8: Techniques of Integration - Section 8.4 - Trigonometric Substitutions - Exercises 8.4 - Page 467: 42

Answer

$${\sin ^{ - 1}}x + C $$

Work Step by Step

$$\eqalign{ & \int {\frac{{dx}}{{\sqrt {1 - {x^2}} }}} \cr & {\text{Using Trigonometric Substitutions}} \cr & {\text{ }}x = \sin \theta,{\text{ }}dx = \cos \theta d\theta \cr & {\text{With these substitutions}}{\text{, we have}} \cr & \int {\frac{{dx}}{{\sqrt {1 - {x^2}} }}} = \int {\frac{{\cos \theta d\theta }}{{\sqrt {1 - {{\sin }^2}\theta } }}} \cr & {\text{use the fundamental identity }}{\cos ^2}\theta + {\sin ^2}\theta = 1 \cr & = \int {\frac{{\cos \theta d\theta }}{{\sqrt {{{\cos }^2}\theta } }}} \cr & {\text{simplifying}} \cr & = \int {\frac{{\cos \theta d\theta }}{{\cos \theta }}} \cr & = \int {d\theta } \cr & {\text{integrate}} \cr & = \theta + C \cr & {\text{write in terms of }}x,{\text{ }}x = \sin \theta \,\,\,\, \Rightarrow \,\,\,\theta = {\sin ^{ - 1}}x \cr & = {\sin ^{ - 1}}x + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.