Answer
$\dfrac{\pi}{4}$
Work Step by Step
Consider $x =2\tan \theta \implies dx= 2 \sec^2 \theta d \theta $
Then,
$\int \dfrac{2 \sec^2 \theta d \theta }{\sqrt {4+4 \tan^2 \theta)}} = \int (\dfrac{1}{2}) d \theta$
Now,
$(\dfrac{1}{2}) \int_{-2}^{2} d \theta=\dfrac{1}{2}[\tan^{-1} (1)-\tan^{-1} (-1)]$
Thus, $\int \dfrac{2 \sec^2 \theta d \theta }{\sqrt {4+4 \tan^2 \theta)}} =\dfrac{\pi}{4}$