Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 8: Techniques of Integration - Section 8.4 - Trigonometric Substitutions - Exercises 8.4 - Page 467: 3

Answer

$\dfrac{\pi}{4}$

Work Step by Step

Consider $x =2\tan \theta \implies dx= 2 \sec^2 \theta d \theta $ Then, $\int \dfrac{2 \sec^2 \theta d \theta }{\sqrt {4+4 \tan^2 \theta)}} = \int (\dfrac{1}{2}) d \theta$ Now, $(\dfrac{1}{2}) \int_{-2}^{2} d \theta=\dfrac{1}{2}[\tan^{-1} (1)-\tan^{-1} (-1)]$ Thus, $\int \dfrac{2 \sec^2 \theta d \theta }{\sqrt {4+4 \tan^2 \theta)}} =\dfrac{\pi}{4}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.