Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 8: Techniques of Integration - Section 8.4 - Trigonometric Substitutions - Exercises 8.4 - Page 467: 2

Answer

$$\ln \left|\sqrt{1+9x^{2}}+3x\right|+c$$

Work Step by Step

Given $$ \int \frac{3d x}{\sqrt{1+9x^{2}}} $$ Let $ 3x= \tan \theta \ \ \Rightarrow \ \ 3dx= \sec^2 \theta $, then \begin{align*} \int \frac{3d x}{\sqrt{1+9x^{2}}}&=\int \frac{ \sec^2 \theta d\theta }{\sqrt{1+\tan^{2}\theta}}\\ &=\int \frac{ \sec^2 \theta d\theta }{\sqrt{\sec^{2}\theta}}\\ &=\int \sec \theta d\theta \\ &=\ln |\sec \theta +\tan \theta |+ c\\ &=\ln \left|\sqrt{1+9x^{2}}+3x\right|+c \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.