Answer
$$-\cos (\ln t)+c$$
Work Step by Step
Given $$\int \frac{\sin (\ln t)}{t} d t$$
Let $ u= \ln t\ \ \ \Rightarrow \ \ du=\frac{1}{t}dt $, then
\begin{align*}
\int \frac{\sin (\ln t)}{t} d t&=\int \sin (u) du\\
&=-\cos u+c\\
&= -\cos (\ln t)+c
\end{align*}