Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 7 - Techniques of Integration - Review - Exercises - Page 578: 34

Answer

\[x(\sin^{-1}x)^2+2\sqrt{1-x^2}\,\sin^{-1}x-2x+C\]

Work Step by Step

Let \[I=\int (\arcsin x)^2\,dx=\int (\sin^{-1}x)^2\,dx\;\;\;\ldots (1)\] Using integration by parts \[I=(\sin^{-1}x)^2\int dx-\int \left(\left\{(\sin^{-1}x)^2\right\}'\int dx\right)dx\] \[I=x(\sin^{-1}x)^2-\int\frac{2x\sin^{-1}x}{\sqrt{1-x^2}}dx\] \[I=x(\sin^{-1}x)^2+\int\left(\frac{-2x}{\sqrt{1-x^2}}\right)\sin^{-1}x\,dx+C_1\;\;\;\ldots (2)\] Where $C_1$ is constant of integration Let \[I_1=\int\left(\frac{-2x}{\sqrt{1-x^2}}\right)\sin^{-1}x\,dx\] Using integration by parts \[I_1=\sin^{-1}x\int\frac{-2x}{\sqrt{1-x^2}}dx-\int\left((\sin^{-1}x)'\int\frac{-2x}{\sqrt{1-x^2}}dx\right)dx\] \[I_1=2\sqrt{1-x^2}\sin^{-1}x-\int\frac{2\sqrt{1-x^2}}{\sqrt{1-x^2}}dx\] \[I_1=2\sqrt{1-x^2}\sin^{-1}x-2x+C_2\;\;\;\ldots (3)\] Where $C_2$ is constant of integration Using (3) in (2) \[I=x(\sin^{-1}x)^2+2\sqrt{1-x^2}\,\sin^{-1}x-2x+C\] Where $C=C_1+C_2$ Hence \[I=x(\sin^{-1}x)^2+2\sqrt{1-x^2}\,\sin^{-1}x-2x+C.\]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.