Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 7 - Techniques of Integration - Review - Exercises - Page 578: 37

Answer

\[\frac{1}{2}\sin 2x-\frac{1}{8}\cos 4x+C\]

Work Step by Step

Let \[I=\int (\cos x+\sin x)^2\cos 2x \:dx\] \[I=\int \left(\cos^2 x+\sin^2 x+2\sin x\cos x\right)\cos 2x\:dx\] \[\left[2\sin x\cos x=\sin 2x\right]\] \[I=\int [1+\sin 2x]\cos 2x\: dx\] \[I=\int \cos 2x \:dx+\frac{1}{2}\int 2\sin 2x \cos 2x\:dx\] \[\left[2\sin\theta\cos\theta=\sin 2\theta\right]\] \[I=\int\cos 2x\:dx+\frac{1}{2}\int \sin 4x\:dx\] \[I=\frac{1}{2}\sin 2x-\frac{1}{8}\cos 4x+C\] Where $C$ ia constant of integration Hence \[I=\frac{1}{2}\sin 2x-\frac{1}{8}\cos 4x+C\:\:.\]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.