Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 7 - Techniques of Integration - Review - Exercises - Page 578: 39

Answer

$\frac{e-2}{8}$

Work Step by Step

Given $$\int_0^{1/2} \frac{x e^{2 x}}{(1+2 x)^2} d x$$ Integrate by parts \begin{aligned} u&= xe^{2x}\ \ \ \ \ \ \ \ \ \ \ &dv& = \frac{dx }{(1+2 x)^2}\\ du&= (2xe^{2x}+e^{2x})dx\ \ \ \ \ \ \ \ \ \ \ & v&= \frac{-1}{2}\frac{1}{1+2x} \end{aligned} Then \begin{aligned} \int _0^{1/2} \frac{x e^{2 x}}{(1+2 x)^2} d x&= -\frac{1}{2} \cdot \frac{x e^{2 x}}{1+2 x}\bigg|_0^{1/2} -\int_0^{1/2} \left[-\frac{1}{2} \cdot \frac{e^{2 x}(2 x+1)}{1+2 x}\right] d x\\ &=-\frac{x e^{2 x}}{4 x+2}+\frac{1}{2} \cdot \frac{1}{2} e^{2 x}\bigg|_0^{1/2} \\ &= \frac{1}{8} e-\frac{1}{4}\\ &=\frac{e-2}{8} \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.