Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 7 - Techniques of Integration - Review - Exercises - Page 578: 12

Answer

$$\frac{1}{2}\tan^{-1}(e^{2x})+c$$

Work Step by Step

Given $$\int\frac{e^{2x}dx}{1+e^{4x}}$$ Let $u=e^{2x} \ \ \Rightarrow du=2e^{2x}dx $, then \begin{align*} \int\frac{e^{2x}dx}{1+e^{4x}}&=\frac{1}{2}\int\frac{ du}{1+u^{2}}\\ &=\frac{1}{2}\tan^{-1}u+c\\ &=\frac{1}{2}\tan^{-1}(e^{2x})+c \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.